

Baden-Württemberg

MINISTERIUM FÜR WIRTSCHAFT, ARBEIT UND WOHNUNGSBAU

Steckbrief zum Projekt

"Didaktik 4.0 - SmartFactory"

Pädagogische Hochschule Schwäbisch Gmünd

Projektbeteiligte

- Technische Schule Aalen mit dem dualen Partner Carl Zeiss AG (Standort Oberkochen)
- Gewerbliche Schule Göppingen mit dem dualen Partner Heidelberg Manufacturing Deutschland GmbH (Standort Amstetten)
- Gewerbliche Schule Schwäbisch Gmünd mit dem dualen Partner Robert Bosch Automotive Steering (Standort Schwäbisch Gmünd).

Inhalt des Projekts

Entwicklung und Gestaltung digitaler Lernmaterialien und didaktischer Konzepte für die Musterlösung "SmartFactory", um die Kompetenzen und Handlungsfähigkeiten der Auszubildenden für Industrie 4 .0-geprägte Arbeitsumgebungen optimal entwickeln zu können.

Für den Bereich "Service und Instandhaltung" (Szenario 4 aus der Handreichung des Landesinstituts für Schulentwicklung zur Umsetzung von Industrie 4.0 im Unterricht an beruflichen Schulen) wurden lernortkooperativ (digitale) Lehr-Lernmaterialien entwickelt, erprobt und eingesetzt.

1. Arbeitsgruppe Robert Bosch Automotive Steering & Gewerbe Schule Schwäbisch Gmünd

Umsetzung Einzelaspekt der realen Arbeitswelt (Instandhaltung durch Aufrüstung und Vernetzung einer Ständerbohrmaschine)

<u>Ziel:</u> Zunehmende Vernetzung von Werkzeugmaschinen der Ausbildungswerkstatt bei der Robert Bosch AS GmbH.

Ausrichtung: Einzellösung zur Vernetzung und Digitalisierung.

Lernortkooperation: gemeinsame curriculare Zusammenarbeit

Lernmedien: Tablets, CP-Lab zur Vorbereitung.

2. Arbeitsgruppe Heidelberg Manufacturing Deutschland GmbH & Gewerbe Schule Göppingen

Lernsituation in einer realen Arbeitssituation (Diagnoseaufgaben zur Vernetzung am Beispiel eines Späneförderersystems).

<u>Ziel</u>: Instandhaltungsmaßnahmen aufgrund einer Gerätediagnose vor Ort zu planen, zu visualisieren und umzusetzen.

<u>Ausrichtung:</u> Lern- und Arbeitsaufgaben werden direkt aus dem realen Arbeitsprozess gewonnen. <u>Lernortkooperation:</u> gemeinsame curriculare Zusammenarbeit

<u>Lernmedien:</u> Tablets, CP-Lab, Diagnosetool mit virtueller Aufbereitung.

3. Arbeitsgruppe Carl Zeiss AG & Technische Schule Aalen

Simulation realer Arbeitsprozesse (Condition Monitoring CP Lab "Bohren und Wenden")

<u>Ziel</u>: Simulation von realen Prozessaufgaben mit Hilfe von CP Labs und die Übertragung dieser auf reale Arbeitsprozesse.

<u>Ausrichtung:</u> Simulation über CP Labs. Reale Prozesse werden simuliert, um die Anforderungen der Arbeitsprozesse abzubilden.

<u>Lernortkooperation:</u> Virtuelle Cloud. Zusammenführung gemeinsamer Daten. Cloud-basierte Zusammenarheit

<u>Lernmedien:</u> Tablets, E-Learning-Content Format, CP-Lab.

Stand: März 2020

Baden-Württemberg

MINISTERIUM FÜR WIRTSCHAFT, ARBEIT UND WOHNUNGSBAU

Projektziele

- Entwicklung und Testung didaktisch aufbereiteter Unterrichtsmaterialien und Lernsituationen ggfs. unter Nutzung digitaler Medien
- Stärkung der beruflichen Handlungsfähigkeit durch Umsetzung von arbeitsprozessbezogenen Unterrichtskonzepten für die Musterlösung "SmartFactory"
- Aufzeigen von Anknüpfungsmöglichkeiten an den bestehenden Lernfabriken als auch an beruflichen Schulen, die zurzeit keine eigenen Lernfabriken vorhalten können (ebenso deren duale Partner)
- Stärkung der Lernartkooperation zwischen beruflichen Schulen und dualen Partnerbetrieben, durch die projektbezogene und bereichsübergreifende Zusammenarbeit

Erreichte Zielgruppe

- 45 Auszubildende der Ausbildungsberufe Mechatroniker/-in, Elektroniker/-in für Automatisierungstechnik, Industriemechaniker/-in
- 6 Lehrkräfte und 6 betriebliche Ausbilderinnen und Ausbilder

Produkte

- Unterrichtsmaterialien und Lernsituationen zur Instandhaltung und Wartung innerhalb von Industrie 4.0
- Digitalisierte Lernmedien zur Instandhaltung und Wartung innerhalb von Industrie 4.0
- Moodle-Lernplattform für den Austausch der entwickelten Lehr-Lernmaterialien

Genutzte Plattform

Moodle-Plattform

Evaluation

Dreistufige Evaluation mit folgenden Aspekte:

- Dokumentation des Projektverlaufes aus Sicht der Projektpartner
- Motivation und Nutzen des Projektes
- Verlauf des Entwicklungsprozesses
- Ausprägung und Nachhaltigkeit der Lernortkooperation
- Implementierung der Materialien in den Unterricht und in die Ausbildung
- Qualität der entwickelten Materialien und Konzepte
- Einsatz digitaler Medien und der Transferplattform
- Einschätzung des Innovationsgrades

Erkenntnisse aus der Evaluation

- direkte Verknüpfung von theoretischen Wissen und praktischer Anwendung positiv von Auszubildenden bewertet
- Intensivierung der Lernortkooperation bei allen Projektakteuren messbar, Projekt hat zu einer Veränderung in der Lernortkooperation geführt
- Förderung des selbständigen, handlungsorientierten Lernens durch Projektcharakter und problembezogene Aufgabenstellungen
- Technische Schwierigkeiten führten teilweise Frustration und Nichterreichung von Teilzielen

Stand: März 2020

MINISTERIUM FÜR WIRTSCHAFT, ARBEIT UND WOHNUNGSBAU

Weitere Erkenntnisgewinne

- Übertragungen von Fragestellungen der Lernfabrik in die reale Arbeitswelt am Thema Instandhaltung/Wartung möglich, hoher Aufwand in der Koordinierung und Abstimmung zwischen beiden Lernorten,
- Prozessbezogene Aufgabenstellungen fehlen im Alltag der schulischen und betrieblichen Ausbildung – Projekt gibt Anregungen und zeigt Umsetzungsbeispiele für eine veränderte (prozessbezogene) Didaktik auf,
- Lernortkooperation entscheidender Schlüssel für den Erfolg von Ausbildung 4.0
- Nachhaltige Integration der Projektergebnisse in die Ausbildung der Zielberufe Industriemechaniker/in; Mechatroniker/in und Elektrotechniker/in für Automatisierungstechnik möglich

Verbreitung der Ergebnisse

Fachtagungen, Publikationen sowie Erstellung und Pflege der Website.

Stand: März 2020